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This paper presents a novel distributed data analytic architecture, and corresponding algorithms that ap-
ply to infrastructure anomaly detection. The proposed method mainly focuses on smart water networks,
demonstrating that the highest possible sensor rate analytic performs at on-edge nodes without requiring
the whole date to send back to the server. This approach saves communication costs and lengthens
the lifetime of the battery-powered nodes. A complex set of tasks is developed on a single-core Intel

Keywords: Curie processor, Arduino101 and the raw sensor data is compressed using a customized Lempel-Ziv
Anomaly detection compression algorithm tailored to resource-constrained embedded systems. The compression rate figures
LoRa are then analyzed but only the compressed data which is associated with the anomalous condition is sent
Arduino101 back to the server by means of a LoRa platform. The developed system is evaluated experimentally and
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the results verify the high resource utilization.
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1. Introduction

The development of wireless sensor network (WSN) platforms
to support critical, potentially inherently vulnerable and costly
infrastructures, such as water networks is gaining much interest
due to their ability to monitor utilities to provide early warning of
deterioration or failure (e.g. leakage). In traditional monitoring sys-
tems, such utilities may use expensive wired platforms [1] which
are usually integrated into a supervisory control and data acqui-
sition (SCADA) system. However, distributed wireless monitoring
systems are considered more desirable due to their flexibility and
cost-effectiveness and ability to be retrofitted in difficult to reach
or dangerous areas. Prior research, e.g. [2] refers to water network
infrastructures and modeling and [3] that focuses theoretically
on fault detection in water networks using modeling and state
estimation methods. As technology advances the complexity of
the onboard processing is increasing over time, for example, [4]
introduces a WSN to detect and identify major anomalies in steam
flood pipeline networks in two stages, single node processing, and
multi-node collaboration. They build a decision tree to capture the
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salient pressure and flow characteristics of each problem to distin-
guish them from false alarms. They explain it only in a systematic
way without pointing out the results and design details. A seminal
article in the field of water pipeline’s anomaly detection using
sensor networks is [5] which describes the application of Intel
Mote sensor nodes (SNs) to collect required samples for anomaly
detection, transmit the Min/Max/Average data and go back to
sleep. Data is relayed via the GPRS modem to a back-end server.
This approach is what many subsequent researchers have followed
since. However, the major disadvantage is that all sensed or aggre-
gated data is expected to be sent to the back-end system for anal-
ysis. This means that the battery-powered nodes will deplete their
resources as they have to communicate all the data to the server
where it is not always necessary. Authors in [6] primarily address
different pipeline leakage detection methods, the detection from
inside [7] or from outside [8] of the pipes. A comparative study
in [7] shows that the interior detection methods are more accurate
than the outer detection methods. Therefore, [6] provides a wire-
less communication system for underground pipeline inspection
where the sensor nodes inside the pipeline are mobile and carried
by robots. The system includes portable sensor nodes inside the
underground pipeline, aboveground relay nodes deployed along
the pipeline, a remote monitoring center, and a mobile commu-
nication network from a third-party provider. They also mention
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Nomenclature

ISM Industrial, scientific and medical radio

CR, FCR Compression rate, Filtered compression
rate

Lz Lempel-Ziv data compression method

LPWAN Low power wide area network

RTC Real time clock

Ts Sampling time

Towait Waiting time in the wait loop

Tr1 Total reading and transmitting time of a
compressed packet

Tro Pure data transmission time

S Laplace operator

LoRa Long range communication technology
for IOT

V4 Discrete time shift operator

Teomp Time needed for data compression

Trest Execution time of the rest of the main
loop

Traskn) Execution time of the task number n

Sw Overall writing speed to SD memory
card

tspfill(min) Total minimum time to filling up SD card
with data

U(s) Laplace form of the raw measured signal

T Time constant of the first order low pass
filter

Uy The raw measured signal in the time do-
main

Y(S) Laplace form of the filtered signal

Ve The filtered signal in the time domain

V4 Discrete time shift operator

P Average power (W)

%4 Average voltage (V)

I Average current (A)

that the sensor nodes are equipped with different types of sensors,
including acoustic or pressure sensors to detect a leak. However,
the way to detect a leak is not discussed. This potentially expensive
and complicated method might work under special circumstances
where there is a control on the robots carrying the nodes and
bidirectional communication between the sensor nodes inside the
pipe with outside, but it may not be suitable for all pipe size and
type. Reference [9] presents a linear WSN application on the liquid
protection systems where the main focus is on the energy aspect.
They introduce an energy-efficient node placement scheme where
the optimum node number and nodes’ distance is calculated but
with no discussion on detecting anomalies in the pipes. Another
article [10] simply uses the CC2530-based sensor node for real-
time monitoring and data collection such that the warning is
transmitted in case of anomaly occurrence and make the alarm
decision according to the pre-stored pipeline safety database. This
method may work in very simple scenarios but not in the real
water networks since it does not have any fixed structure and
ability to determine the safety database. Moreover, the limited
communication range of CC2530 might be another practical flaw.

Nowadays it is possible to use much finer grained and higher
fidelity sensors to provide more information about what is hap-
pening to the pipes (e.g. the NEC Tokin vibration sensor can reach
10 kHz). This yield to the ability to detect issues much faster and

earlier. However, the cost in terms of battery depletion and com-
munication over a data network to send such data is prohibitive.
Therefore, practical data management and edge processing by em-
bedded systems are crucial to both minimize communications and
in doing so reduce the complexity of back-end processing meaning
that analysis can be carried faster and in real-time. The reduction
of the data in a methodological and efficient way is the focus of
this article aiming to minimize the payload for communication in
a wide-area water network.

The main contribution of this paper is to propose and im-
plement new optimal algorithms for the anomaly detection on
single-core processors, integrate LoRa technology, and finally test
and verify the results. This is the first work to demonstrate the
complex multitasking operations on simple low-end MCU based
sensor nodes to process high-fidelity sensor data at the edge. The
primary stage of the work with limited results was done by the
author and presented in [11] for the European designated ISM band
of 868 MHz. The idea of using the data compression rate (CR) for
anomaly detection has already been proposed in [12]. It is realized
throughout the present research work considering many technical
constraints toward making a wide range and low power edge-
based anomaly detection system. This article reports important
improvements by optimizing the implementation and maximizing
the payload size. The resultant attractive outcomes applicable for
all ISM bands and the Asian ISM band of 433 MHz in particular is
also presented.

The paper is organized as follows: Section 2 briefly refers to
the system overview, requirements and practical limitations. The
next Section 3 refers to the methodology implemented for the
anomaly detection. This section describes the pseudo codes for
the proposed algorithms with several practical considerations and
discusses different tasks in detail and represents an important
timing diagram that clarifies the whole system operation. The last
Section 4, states the performance analysis for the most important
tasks associated with the possible scenarios. The last subsection
represents the power consumed by each SN during the defined
worst-case scenario.

2. System overview, requirements and limitations

Fig. 1 illustrates a symbolic architecture which covers a section
of a water network equipped with a WSN with tens of SNs located
in a 3-5 km circle area, a base station or central processor where
further data evaluations are carried out, and the cloud to keep
data available through the Internet. In the network highlighted by
the red color, a group of the local SNs (SN1, SN3, and SN4) sense
the water pressure variations, that might be because of occurring
anomalies (water leakage or burst) in the pipes or other equipment.
In order to detect such failures or malfunctioning, the defined
system has to fulfill the following requirements:

e Measured signal is sampled at the maximal achievable sam-
pling rate for the sensor and the node system that can be
handled based on the developed hardware.

e Data is temporarily stored depends on the node’s available
amount of storage, then compressed and finally, edge-
anomaly detection is carried out based on the CR [12].

e The utilized data compression technique should be lossless to
maintain data quality.

e upon detection of an anomaly, the originating nodes send
immediate notifications to the central, indicating the source
node identity and time detected.

e The server subsequently asks for extra data from the source
nodes. It then sends this as a request to the source nodes with
a schedule, indicating when they should transmit the data
back to the central base station. Nodes not seeing the event
remain silent.
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Fig. 1. Water network architecture with sensor nodes, central node and server.

e The source nodes will communicate a string of compressed
data packets, including before/after anomaly and also the
corresponding timestamps.

e The compressed data on the server side is decompressed to
generate original pre-filtered data for further evaluation of
the anomalies.

e The event connection to the central system uses a carrier
sense MAC protocol with no delay in sending data. It is used
because the nodes are sparse and the interference should
be low, so this approach minimizes delays indicating an
anomaly.

e The permissible ISM band for this research is 433 MHz.

3. Implementation of anomaly detection
3.1. Proposed Arduino101-LoRa based WSN

Arduino101, a low-power consumption Intel-Curie module has
been used as the base platform for the implementation of the SNs in
this research due to its unique characteristics. The 32-bit processor
with 24 kB SRAM and 196 kB flash memory [13] facilitates the
design setup with commercially available peripherals, but hard
considering its single-core processor’s limitations. It is an example
of a low-end, MCU-based node but the work is not limited to this
architecture and the other MCU-based nodes can also be used. The
proposed distributed WSN looks similar to a parallel computing
at the system level. However, all tasks have to be implemented
sequentially in the SN level on this processor. In summary, being
the single-core and having SRAM limitation are the main con-
straints for the implementation which are discussed further in the
next sections. Fig. 2 shows the implemented SN(right) and input-
output connection diagram (left) which makes the appropriate
connection to analog sensor/s and other peripherals (middle) as
follows:

e LoRa shield (SX1276MB1MAS): Used to achieve a wide-area
communication [14].

e SD card shield (’Stackable SD/TF Card Shield V3 for Arduino’):
For the read/write cycle on the SD memory card.

e Real-time clock (RTC) module: To have an accurate clock time
for SNs.

e Extension board: Designed and developed to connect analog
sensors and RTC module to the Arduino101 and to make the
appropriate connection to the LoRa module and SD memory
card shield.

e Pressure sensor: As the candidate of a fast analog sensor to get
water pressure measurements, a PT4400 can be considered
with the detailed specifications written in [15]. To be inde-
pendent of the water network while developing the platform,
a light sensor is primarily used instead of the pressure sensor
where it provides similar measured signals for the rest of the
process.

3.2. Anomaly detection procedure

Anomaly detection program includes different tasks located
both in the main thread, and a callback function in the second
thread. The below Algorithm 1 represents the pseudo code for the
main thread in the Arduino-based anomaly detection system. The
wait loop in the first thread ensures the input data array is filled up
with pre-filtered sensor data. The array pipelines that data to the
next important stage, the data compression algorithm.

The number of interrupts during the loop execution depends
on the maximum time required for each task in the loop and the
defined sensor sampling time (T;). Due to have several fast and
slow tasks and to deal with the concurrence, an interrupt service
routine has been used as an additional pseudo-thread represented
in the Algorithm 2. The interrupts may occur everywhere during
either the wait loop or the infinite while loop operation. Since
the SN-side tasks in the single-core processor have to be executed
consecutively with the interrupt/s in between, it is important to
consider both individual and the total required time of tasks.

Data: Set up input data, arrays and Interrupt Timer
while do
while input for Comp.algorithm is not complete do
Wait and call Algorithm 2 every Ts millisecond;
end
Call Compression Algorithm; Determine CR; Apply a low pass
filter to CR;
if received any synchronization Request then
Update RTC;
else
Read RTC;
end
timestamp = RTC time;
if there is Anomaly or it is inside timer1 period then
Start timer1 by the first anomaly; Count timestamps until
timer1 = 1 min; Go to Algorithm 1 look for the worst
anomaly for 1 min; Notify Center at the end of 1 min
period; Reset timer1 and Start timer2;
end
Append timestamp and data packet to SD memory card (refer
to Algorithm 3);
if There is a Data Request and Timer» <= 1 min then
Read SD card and transmit data (Algorithm 4);
Reset timer2;
end
end
Algorithm 1: Pseudo Code for the main loop of SN
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Fig. 2. Developed Arduino101-LoRa board and I/O connection diagram.

Read Sensor;

Apply sensor Transfer function;

Apply pre-filter and put new data in the input data array;

Back to where interrupt started in Algorithm 1;
Algorithm 2: Pseudo Code for Callback function

Properly scheduling tasks to the above-mentioned threads and
considering their execution times helps to cover all the require-
ments and optimize the whole system. Otherwise, the system may
fail due to the low SRAM capacity, inappropriate memory and/or
time allocation. The anomaly detection system includes several
major tasks, which are discussed in the next subsections.

3.3. Major tasks in anomaly detection

3.3.1. Lossless compression algorithm

Applying a compression algorithm to an input data array, the
data compression rate (CR) is calculated according to the length of
both input array and the associated output array as represented in

(1):
input length — output length
CR% = 100 x [P i P & (M
input length

Because of the limited memory size of the processor assigned for an
input data array, the input length supposed to be fixed. However,
the output length will vary according to the nature of the data in
its corresponding input data array and is not fixed.

According to [12], the anomaly detection carries out upon a cor-
relation between raw data value fluctuation and the corresponding
CR. This scheme enables identification of transients or failures in
the systems such as water distribution networks where they can be
detected by evaluation of the CR instead of the raw measurement
data. The local detectors, SNs in this scheme neither transmit raw
data nor compressed data to center for primary anomaly detection.
They evaluate the compression rate to detect anomalies and out-
liers first and notify the center afterward. The center will ask for
the anomalous compressed data for further evaluations in time.
This will offer a low power consumption WSN resulting in an early
detection of anomalies with faster and more lightweight procedure
compared to the usual methods.

To find the best compression method, several small-sized algo-
rithms were tested during this research. They did not succeed due
to the limited SRAM space available. The Lempel-Ziv algorithm,
developed in [16] and addressed in [17] was also tried out since
authors in [ 18] had reported they had implemented a lightweight
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Fig. 3. Data flow from the measurement point to filtered compression rate.

subset so-called Mini-LZO on their Intel Edison platform with 2 GB
SRAM. However, it is required memory size exceeded Arduino101’s
24 kB SRAM. Another function, LZO1X_1_11 was found in the
original LZO library and customized by manipulating the memory
allocations and the library modules to be tailored to the memory-
constrained Arduino101.

Increasing the input data array size in the proposed system with
the sequential tasks can improve the compression performance
provided that a sufficiently large sampling time is set to reserve
enough time to execute other tasks in the main loop. However, the
slower sampling rate means the lower system performance which
is not acceptable. Optimizing the SRAM usage was carried out
along with integrating the other tasks and by compromising the
measurement speed, SRAM space, and compression performance
and considering future developments, the input size was set to be
1 kB. A high compression rate (CR% close to 100 %) obtains for input
data windows with the low data variation and lower CR% reflects
more input data variations.

3.3.2. Sensor data reading and pre-filter

Fig. 3 illustrates the data flow diagram from the sensor mea-
surement point to the filtered compression rate. The sensor signal
is sampled every T; millisecond by executing the second thread
which is a callback function represented by the Algorithm 2. To
have one-byte data format, the sensor data scales between 0 to
255 as unsigned character. This minimizes the memory usage and
maximizes the number of input data for the compression algo-
rithm. The sensor measured signal varies because of the sensor
noise and/or different interactions within the water network such
as the system response in the water demand and resource changes,
anomalies, etc.

The length of the output compressed data array depends on the
measured data variations in the input data array. Since the small
variations in the signals lower the compression performance, using
a pre-filter can improve the performance, prepare the noiseless
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Fig. 4. Rate of reducing data size with and without pre-filter after applying compression algorithm.

data for the process, and reduce the total payload for the com-
pressed data communications. As the low pass pre-filter, a moving
average or a first-order filter do not change the fundamental form
of the measured raw signal. The Laplace form of an implemented
simple first-order low-pass filter and its discrete time equivalent
driven based on the Backward Euler method is given in (2) and (3)
where S, U(S) and Y(S) are the Laplace operator, raw and filtered
signals respectively and Z is the discrete time shift operator. 7, u;
and y; are the time constant, input and output in the time domain
respectively.

The sampling time in the filter sets according to the required
bandwidth of the measured signal and other processing limitations
that will be discussed later.

Y(S 1 1-2z71
LS 5= @
US) txS+1 T,
1 T
= — _ u 3
Ve TLS+1X(Tsth1+ t) (3)

Fig. 4 represents the percentage of the compressed output data size
out of the input for a real test case with and without the pre-filter.
The gray solid graph points out the rate without applying the pre-
filter, and the dashed line illustrates the same factor after a low
pass pre-filter applies. The average compacted data size without
the pre-filter reduces up to 51% in comparison to the size of the
input data array at the same time, applying the pre-filter to the
identical test case results in a 23% more reduction in the com-
pressed data sizes. This yields better internal and external memory
usage, the lower communication payload, the shorter time of the
slow LoRa communication, and the lesser total power consumption
of the WSN which is the main objective of this research.

3.3.3. Using filtered compression rate for anomaly detection

The abrupt extreme anomalies can dramatically change the raw
measurement values and therefore the CR profile. By looking at
this profile, the detection system can figure out the occurrence of
either suspicious events (transients) or anomalies. The CR asso-
ciated with the measured data of normal operations should have
less variation than abnormal situations. Applying an additional
low pass filter to CR can smooth the CR profile. Assuming that a
pre-defined threshold is a border to distinguish anomalies from
normal operations and unwanted transients, this low pass filter
can remove transients and keep CR associated to the normal op-
eration even further from the threshold. Therefore, the probability
of catching the correct anomalies increases. A solid blue graph
in Fig. 5 illustrates an example of a normal CR with great deal
of variations. The corresponding filtered data compression rate
(FCR) by applying a first order low pass filter is also represented
by a smoother dash gray color. In a simple definition of anomaly

detection, an anomaly can be detected when the FCR falls below a
well-defined definite or adaptive threshold [18]. The red dash-dot
line in this figure denotes a predefined threshold, the borderline
for the detection process. It is noteworthy that the indicator time
(t = 70 s) represented by the FCR might slightly differ from the
accurate time of the anomaly within the raw data. The initial value
for the readout (FCR) sets to 100 to stay above the threshold to
avoid issuing the wrong anomaly when the system starts up. The
value of the time constant (7) in this filter depends on the value of
the signal variations and it has been set to 0.2 in this example.

This is the primary stage of the anomaly detection in the SN-
side and further evaluation can be carried out in the center after
the pre-fault and post-fault data are decompressed which can be
the subject for another research.

3.3.4. Writing to SD memory card

It is useful in many applications to keep the long-term data in
real time when they measure at the highest possible frequency.
The SD memory cards are slower than the internal non-volatile
memories and the low speed of the writing process to the SD
memory cards limits their fast real-time usage. However, it can
be used appropriately to keep compressed data with a shorter
size in comparison to the long raw data arrays. In this project, a
Stackable SD/TF Card Shield V3 for Arduino is used together with
a fast SD memory card. As [19] lists, there are many alternatives
to choose one among different viable SD memory cards and a 16
GB Class 10 Ultra SDHC UHS-1 Memory Card — 80 MB/s has been
used primarily to achieve the fastest possible Read/Write (R/W)
operations. The Arduino101 has an SD memory card’s R/W library
(SD.h) which is already designed to append data from the first
address 0 to the end of the SD memory card. However, extra control
on the R/W functionality is needed to manage the variable-size
compressed data packets in the middle of a text file on the SD
memory card.

The most important considerations while implementing
‘Writing data’ to the SD card are pointed out in beneath:

o The compressed data packets have different sizes depending
on the nature of the fed input data. Data is appended packet
by packet, each as a string of an unsigned integer number into
a text file and each number in a separate line.

e An SD card with 16 GB memory stores long time data to:

— Access to a long history of compressed data even more
than a year.

- Read a part of data from the SD card while fast coming
new data is being written.

- Make a data string and transmit it via the slow com-
munication platform (LoRa) while there is no risk of the
data being overwritten on the SD card
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Fig. 5. Data compression rate before and after using a low pass filter.

e Memory usage of the SD card is checked while writing, and
the data are entirely removed when it exceeds a predefined
memory limit. Then the next data packet is written from
address 0 in the SD memory card. The limit value sets to at
least 1 kB less than 16 GB. Because the lengths of the packets
are variable, and it should be guaranteed, the last packet is
fully written at the end of the latest written data in the text
file.

According to the Algorithm 3, writing to the SD memory card in
every loop execution starts with opening a text file, checking the
memory status, appending a combination of a timestamp, corre-
sponding compressed data arrays, and identification numbers as
shown in Fig. 6. It terminates by closing the text file. The data in the
SD memory card includes a symbol, ‘T’ connected to a timestamp
and follows with a variable size array of compressed data. This full
array (timestamp + compressed data) holds a big size together with
some extra characters for separation of numbers and/or separation
of lines while being written on the SD memory card.

By removing the additional spaces from the characters, they
will look like connected characters and cannot be distinguished by
the center after transmission. This was a problem in [11], where
transmitting packets more than 32 bytes was impossible. This
is addressed in the next section where the maximum possible
payload, 250 bytes can be reached. After transmitting the com-
pressed data, it is decompressed in the center. Not all the packets
begin with a timestamp. For example, if a packet is longer than
the predefined maximum size (250 bytes), it will start with a
packet, including a timestamp and continues with the next packets
without the timestamp. Therefore, there should be other flags at

Data: Address of the last written data
Result: To append new compressed data packet to a data text file
if the text file exists then
open it;
else
Create it;
end
if not reached to the far permissible capacity limit then
1. Append the timestamp ;
2. Append the data packet line by line;
else
3. Clear all data from the SD memory card;
4, Set writing address equal to zero;
end
Close file;
Algorithm 3: Pseudo code for writing to SD memory card

Packet x
= Sub- Node Sub-packet
Timestamp|  Data |, et No. | Address ID (1 byte)
<246 bytes
4 bytes Compressed 1 byte 1 byte 1 byte
data

Fig. 6. An example of a compressed data packet format in the SD memory card.

the end of each packet to make the center aware of the packet type.
The center carries out different operations on receiving the various
packet types.

3.3.5. Reading from SD memory card

In the reading stage, a long data string is made from the rel-
evant packets, and then the SN communicates the string to the
center which is another Arduino101-LoRa based SN. Algorithm 4
represents the pseudo code for reading data line by line from the
SD memory card and data transmission if requested. As already
mentioned at the end of the previous section, to maximize the
number of the data size of the possible payload, the data format
previously written on the SD memory card has to be manipulated.
It is written as characters and holds the larger size than pure
data. Therefore, it is needed to separate the timestamp symbol
(‘T’) and make integer data before the transmission. By this, the
extra separating characters are neglected and at the same time;
a 1-byte unsigned integer for each data is assigned. The commu-
nication packet size is already limited by default, and the entire
communication payload size affects the total communication time
and the node power consumption. Therefore, it is prominent to
consider making every packet effectively. The data format must
have two important characteristics. First, it must be able to be
separated by the central node while the decompression algorithm
is applied. Second, the timestamps must be distinguished from the
other data and then extracted from the received packets before the
decompression algorithm is applied.

The most important considerations while developing code for
the reading and communication tasks are:

e Reading a specific number of the last compressed data pack-
ets with the full length should be guaranteed.

e It is read in the same format as it has already been written
to the SD memory card. Therefore, data must not be either
overwritten or read from the middle of an array. It must start
with the first item (timestamp) and terminates at the end of
a compressed data packet.

e The primary definition was to prepare 2 min of compressed
data for communication by receiving a request from the cen-
ter. However, it can be an unlimited time in the recent de-
velopment proposed in this paper. After decompression at
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the center, the data packets will be expanded to generate the
longer filtered raw data arrays.

o If the pointer of the last data is in the early part of the text file
and there are not still many data arrays to send, it will send
whatever data arrays already existed from address 0 up to the
present address of the writing pointer. Otherwise, it will send
enough data on the stored history.

3.3.6. Data communication
There might be either short or long communication packets in
the proposed WSN as follows:

e System settings packet: The different types of setting packets
within the implemented WSN are initial parameter settings,
anomaly data request, and synchronization command. They
are short packets of a few bytes transmitted by the center to
the SNs. For example, a data request packet includes the SN
number and the time of the anomalous data transmission.

e Worst-anomaly packet: After the first anomaly is detected by
an SN, it activates a wait timer (1 min) and the next possible
anomalies during this period are evaluated. In the end, a
notification representing the worst anomaly with the lowest
FCR together with the related timestamp is transmitted to the
center, and the wait timer is reset to be prepared for the next
round of anomaly detection.

Data: Required history (time) of the stored data
Result: Make a fixed size sub-array of compressed data packet,
add identification and timestamp if needed and then
transmit to center
Open text file in the SD memory card;
Symbol ('T") Counter = 0;
while pointer is less than Post-fault address do
while Pointer has not reached to the beginning of the required
packet do
Still go one-step back in the memory address toward the
starting point;
end
if (Symbol ('T’) Counter = 0 meaning that it is the first Character
equal to 'T’) then
Symbol ('T’) Counter++;
Extract ‘T’ from timestamp;
Separate different parts of timestamp;
Put them consequently in the primary rows of a
transmission array in unsigned integer format;
end
while Pointer has not still exceeded the maximum possible
payload size and not reached to the next timestamp (started with
the symbol'T’) do
Add new unsigned integer data to the packet
end
Make an integer data string including pure timestamp and
compressed data array;
Add specific Flag to the end of the packet to show either it is
last packet or not;
if (If it is the rest of the previous packet) then
Transmit the rest of previous packet which is without
timestamp;
else
Transmit a new packet starting with timestamp;
end
end
Close file;
Algorithm 4: Reading SD memory card and transmitting com-
pressed data to center

Fig. 7. Developed extension board for RTC and I/O.

e Anomalous data packet: After notifying the worst-anomaly,
another 'wait until the request’ timer (1 min) is activated
by the source node. After receiving a data request from the
center, the source node transmits approximately 2 min of the
pre-fault (1 min) and the post-fault (1 min) compressed data.
The data is transmitted according to the determined schedule
by the center. The center might request the data from differ-
ent SNs one by one (in the node-to-node implementation) or
simultaneously (in the WAP implementation). For the limited
number of SNs with the correct settings, the node-to-node
structure should work fine enough if an appropriate time
schedule is set by the center. Otherwise, a gateway is needed
to manage simultaneous receiving data packets from the SNs.
The data transmission phase includes the following tasks:

- Opening the SD memory card to read the data according
to Algorithm 4.

- Looking back to about 1 min before the worst notified
anomaly for the starting point of pre-fault data.

- Looking forward to about 1 min after the worst notified
anomaly for the endpoint of the post-fault data.

- To make fixed-size sub-arrays from the compressed
data between the starting point up to the endpoint.

- To apply specific identification numbers to each sub-
packet.

- Transmitting the prepared packets one by one.

3.3.7. SN-based clock time and timestamp

Retrieving the real clock time for each SN is needed to make the
timestamp and apply appropriate control in the process. Therefore,
an I%c based RTC module (DS3231) was integrated as shown in
Fig. 7 to achieve an extreme accuracy. The timestamp is the initial
part of every compressed data array that SNs transmit in one or
more smaller packets if requested by the center. The RTC module
is programmed to provide required unique timestamp, which is a
combination of ‘Year’, ‘Month’, ‘Day’, ‘Hour’, ‘Minute’ and ‘Second’
data for the SN. For instance, 180228231219 represents the times-
tamp of the compressed data packet, set to the 28th of February
2018 at 23:12:19. This is an accurate local time for the SN while
writing the last compacted data on the SD card

3.3.8. Synchronization

The SNs operate independent with their own 4 s loop time. They
have 0to 4 s clock time difference. To fix this issue, their clocks have
to be synchronized by an external clock time. Since their execution
is not simultaneous, they read the message broadcasted by the
center at different times in the middle of their own loop. Therefore,
the real clock time should be broadcasted frequently. There might
be three methods to deal with synchronization as follows:
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e Frequent synchronization packets should be transmitted by
the center for at least 4 s to make sure all SNs get the right
clock time and set themselves accordingly.

e To achieve more accurate clock signals, all the SN’s activities
are bypassed as soon as an SN receives the command signal
for a while until all the SNs are synchronized and assign the
main loop execution only for this regulation. The broadcasted
synchronization packets have to be refreshed frequently for
at least 4 s to make sure all SNs get the right clock time and
set themselves accordingly.

e Toequip all SNs with a GPS module to set their time according
to the satellite time. This is a good choice if not only the SN
can supply the GPS power, but also the extra module has a
reasonable price, and the satellite signal is available for the
SNs.

3.4. Worst-case scenario

The implemented simulator of the base station includes only
an Arduino101, an RTC module to provide timing commands for
the SNs and a LoRa shield to make a node-to-node communication
possible. The measuring SNs and the central SN are equipped
with appropriate antenna and they are powered via batteries and
computer USB respectively.

The worst-case scenario is a rare case where there is no data
compression possible at all, the compressed output length will be
about the same as the input size (1 kB). Then, the maximum-size
packets will be written in the SD card in every loop time. This
scenario will yield the maximum time consumption for all tasks
and is called the worst-case scenario in this research. Furthermore,
in the worst-case scenario, SNs are set to the maximum power
mode for transmission to maximize their communication range.

3.5. Main loop operation

To discuss the timing in the main loop, three parameters: Ty,
Trest and Teomp are defined in below:

Twait = Tusk(1): Maximum running time of the wait loop =
Length of the input data array xTs.

Trest = ZnG:Z Tiask(ny: Maximum total execution time for the rest
of the main loop for the worst-case scenario. The maximum likely
compressed output array size is considered where Ty is the
execution time of the nth task and Teomp is the maximum execut-
ing time of the compression algorithm. To achieve the minimum
possible T;, the following conditions must be satisfied together in
every loop execution:

Teomp < Ts (4)

Trest < Twait (5)

R
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Fig. 9. Flow diagram of the maximum times consumed by different tasks.

Fulfilling the above inequalities, the main loop will run in an
approximately fixed time. According to the defined worst-case
scenario, for an output array with the size of 1 kB and T; = 2 ms,
the following values are measured:

Typait =25

Trest =3.54s

Teomp = 0.7 ms

Obviously, the condition in (1) is fulfilled with the above-
mentioned values. Satisfying this condition is needed because
there must not be an interrupt while the compression algorithm is
executing. The second condition is not satisfied while running T,
= 3.54 s and there will be data overwritten before it is compressed,
which is not acceptable. Fig. 8 represents the relationship between
the defined rest time and minimum imaginable T; versus data size
for communication. Whatever data size is larger, both the rest
time and the minimum possible T has to be greater as well. The
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maximum time required for each task in the worst-case scenario
is represented in Fig. 9. In the earliest stage of this diagram, an
internal wait loop that executes in T,,q; ms ensures that the fixed
size input data array (1 kB) is filled up before data compression
algorithm starts. Since the main loop is executing frequently, T,,q;
depends on the number of data already filled up into the input
array during the previous loop execution. It means the wait loop
will run if and only if the input array has not before been filled up.

3.6. Graphical timing diagram

Fig. 10 summarizes the descriptions of the proposed anomaly
detection by a graphical timing diagram. The top diagram (A) de-
notes a pre-filtered measured signal which is the source for the rest
of the procedure. The second diagram (B) represents the increasing
number of the data in the fixed-length input arrays during every
loop execution time (4 s). A filled-up array is compressed and
appended to the SD memory card data. Then, the input array re-
starts to fill up again before the next compression takes place.
Diagram (C) shows the size of the compressed data arrays where
the CR value can be calculated based on (3) using the fixed input
array length shown in diagrams (B) and the related output array

length on diagram (C). Another diagram (D) illustrates the FCR
value after the low pass filter is applied to the CR. Amount of FCR,
less than a predefined threshold value represents anomalies.

After the first anomaly is detected, the worst anomaly (smallest
FCR) is selected among the other possible anomalies in a period
of 1 min as shown also in diagram (D). Then, the SN transmits the
worst anomaly information to the center as shown by diagram (E)
and the center is given 1 min deadline to send its data request.

By receiving the request as shown on this diagram, the SN starts
to transmit the first sub-array at t;; and continues to transmit the
rest of the sub-arrays during the next loops at tg,, ... t4,; until all the
data sub-arrays are transmitted.

4. System performance
4.1. Performance of data writing

The writing to the SD memory card is the third slowest task in
the present implementation. Fig. 11 compares writing speed for the
fast and standard memory card while 790 bytes of unsigned char
data is written to either SD cards. As seen from this figure, the fast
SD memory card is approximately 20 ms faster than the standard
SD card and it takes Max(tysk6)) = 152 ms to write the long packet.
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Fig. 12. Reading time of standard and fast SD cards for 790 bytes data.

In practice, for a 1 kB compressed data written on the SD mem-
ory card, the same occupied memory space cannot be expected. It
is instead:

1 KB unsigned char data = 4.37 kB on SD card (6)

This means that due to having metadata, which is written
together with each unsigned char data, the text file size is about
four times bigger. Therefore, the overall writing speed (Sw ) to SD
memory card can be obtained as:

B 4.37 )
T 1x 152 x 1073

This is slower than the expected written speed of the fast SD
memory card (80 MB/s) which is due to the overhead of opening
and closing the text file, formatting, and parsing texts on the Ar-
duino. Although another more advanced SD-Fat library may help to
speed up the writing procedure, it will need more SRAM, which is
not available on the Arduino101. Theoretically, every 4.37 kB data
is written in each loop time in the proposed worst-case scenario.
Measurements show that after 1 min, 70 kB of compressed data is
written on the SD memory card. Consequently, a 16 GB SD memory
card can be filled up at least in 166 days as calculated in beneath:

16 GB
-
70 KB/min

where tspgimin) refers to the minimum time needed to fill up an
empty SD memory card of size 16 GB. This duration for compressed
data writing is equivalent to a longer raw data if it is decompressed.
In practice, the more stable operation of the system, the better
data compression and the longer tspsy. It is because the output
(compressed data array) size will be smaller than 1 kB for a fixed
loop time and will take longer until SD card is filled up.

Sw = 28.75 KB/s

= 166 days (8)

Espfili(min)

4.2. Performance of data reading

Fig. 12 compares the reading speed for two types, fast and
standard memory card when 790 bytes of unsigned char data,
representing the worst-case scenario is read from either SD cards,
and a string from the data arrays is made.
I 250 x 4.37 422 byt 9

R= e = ytes/s 9
As seen from this figure, the average speed will lower about 10 ms
by using the fast SD memory card in the proposed application. The
packet size of unsigned char numbers is different from the text
file size of these numbers when they are seen in the SD card text
file. Therefore, two values associated with the data transmission
rate can be introduced. The first value represents the transmission
rate according to the size of the data file. This reveals the average
speed (T ) of the whole system, including SD memory card. Every

250 bytes of unsigned char numbers occupies about 250*4.37 =
1092 bytes and needs 2.586 s to be read from SD memory card and
then transmitted. Then: The second value gives the effective data
transmission speed (T, ) according to the pure data size as follows:

R2 = 96 bytes/s (10)

~ 2586

The required time of the reading task varies depending on the
packet size of the compressed data. After an SN receives a data
request from the center, it starts to search back in the SD memory
card data. After it finds the starting point, it reads one packet
of data and makes a data string of integer numbers. Therefore,
the maximum data size is obtained while running the worst-case
scenario by manipulating the algorithm to generate the maximum
output size, which means no data compression at all.

According to the proposed worst-case scenario, within the
transmission procedure, a complete packet includes both the
timestamps and arrays of pre-fault and post-fault compressed
data, each array with the maximum possible size (1 kB) and the
transmission time will be maximum. Due to the limited payload
sizes available, every long array is divided into multiple sub-array
to be able to transmit. In the simplest case, every full packet
includes:

o Atimestamp (7 bytes) only in the first sub-array.

e A pure data array in all sub-arrays.

e The transmitted sub-array number (1 byte) in all sub-arrays.

o An identification number (1 byte) in all sub-arrays indicating
either the packet is the last sub-array or not.

According to the above data arrangement and considering the
maximum possible communication payload size of the LoRa mod-
ule, the payload size is considered in this research equal to 250
bytes. Since the remaining packets do not include the timestamp,
the maximum pure data size of each packet of a long size packet
can be calculated as follows:

Pure data size in the first sub-array: 250 — 9 = 241

Pure data size in the next sub-arrays: 250 — 2 = 248

Number of next sub-arrays = % =3.15

Therefore, besides the first sub-array, which includes the times-
tamp, there will be three other sub-arrays to be transmitted se-
quentially. The last transmitted sub-array of each packet is of size
(0.15 % 248 + 1 =~ 39 bytes). The size of different sub-arrays of a
single packet: 250 - 250 - 250 - 39 bytes and the size of pure data in
each sub-array of above packet: 241 - 248 - 248 - 37 bytes. The data
transmission in the present application is limited by two factors:

e The packet size limitation which is dictated by the LoRa
specifications.

e The sending time limitation which applies to this sequential
implementation.
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Fig. 13. Required time for both reading SD card and data transmission for different packet sizes.

Obviously, with the limited LoRa transmission rate (0.3 to 50
Kbps) or even lower rate respectively mentioned in [20,21], the
measured raw data with T; = 5 ms may not be transmitted in the
real time since the following requirement is not fulfilled:

Transmission rate > Tl = 200 bytes/s ~ 1.56 Kbps (11)
N

The data packet available for anomaly detection in the present
application is a 2 min combination of the variable-size compressed
data arrays. The compressed data cannot be transmitted during
the limited time of Max(Ats) =~ 3 s and will exceed either of the
packet limitations defined by the LoRaWAN. This has been tested
for an array of size 250 bytes as shown in Fig. 13 which takes
Atg = 1238 ms. This test was done using the node-to-node system
where packets longer than 250 bytes could not be received by the
receiver node. The compressed data packet size directly depends
on the way the compression algorithm is used. By a given input
length, the normal LZO compression algorithm allocates a maxi-
mum fixed output length according to the following formula:

Input Length
Input Length

Allocated Output Length = Input Length + 6

64+ 3
(12)

Above relation shows that the maximum allocated output array
size is greater than the maximum input size. The existing max-
imum available SRAM limitation must be taken into account in
any kind of implementation that changes memory allocation. For
example, 'Input Length = 1024’ is set and from (12), the maximum
total memory allocates to the Input Length and output length must
not exceed 1696 bytes.

Every compression output array is appended to the SD mem-
ory card after the corresponding timestamp. If the combination
exceeds the maximum payload size (250 bytes), it has to be divided
to appropriate sub-arrays while transmission.

4.3. Performance of anomaly data communication

Minimization of the time and the payload of communication is
of critical importance in WSNs since power, and times are limited.
Besides the single anomalies, the occurrence of the severe and
redundant anomalies should be taken into account to avoid trans-
mitting the successive event notifications. Among several anoma-
lies occurred during a specific period of time (1 min), the worst
anomaly as the one with the lowest FCR is transmitted together
with its associated timestamp. In addition, a source node should
transmit a 2 min compressed data to the center which is impossible
all at once in a limited time of the main loop execution (4 s).
Therefore, a data packet with a permitted length is transmitted
in each loop execution time, and the full data will take a longer

time to be transmitted. Having such a long-lasting communication
for the preferred anomalies, the SN may lose other upcoming
detected anomalies during communication. To achieve the lossless
redundant anomaly detection, the first and the last address of the
packets associated with each selected anomaly can be stored for
the future communications in a queue. This ensures that the base
station gets all the required data of consecutive anomalies.

4.4. Performance of compression algorithm

To find the best way to control the payload size, the following
options in the compression stage are discussed:

4.4.1. Normal compression algorithm (implemented)
The input data array size is fixed to 1 kB, and the output size is
variable. Then, two following alternatives can be applied:

e To cut every long outgoing packet, the data string, to multiple
sub-array and transmit one by one. At the end of transmis-
sion, a finishing bit informs the receiver that the full packet
communication is finished. The base station in this scenario
has to be smart enough to distinguish different sub-arrays of
the packets to collect and re-build a correct one. Despite being
more complicated implementation, it guarantees that all the
packets are allowed for communication in terms of the packet
size even with the lowest transmission rate. Compressing the
normal data results in a short compacted data, which is not
needed in the communication. However, the defective data
after being compressed to build longer size arrays. Therefore,
considering the maximum allowed payload size equal to 250
bytes, faulty compressed data will usually exceed this size
and have to be divided to sub-arrays before communication.
This causes that most of the time the full-range data of possi-
ble payload size is transmitted.

e The compressed data array sizes must be kept lower than the
limit, 250 bytes. Therefore, the pre-filter and the additional
low pass filter have to be applied more strongly to smooth the
variations. Although this option introduces a smaller com-
pressed data size for communication, it will result in a con-
servative and insensitive anomaly detection system.

4.4.2. Adaptive compression algorithm (evaluated)

According to this scenario, the size of the input data array to the
data compression algorithm has to vary until it causes an output
array with specific size, for example, 250 bytes. Consequently, the
execution time of the compression algorithm will vary depending
on the number of iterations. This is an attractive option in terms of
making a full control over the communication packet size with a
fixed data format.

While occurring anomaly, the data fluctuates abnormally re-
sulting in a longer compressed data and a lower CR. In such cases,
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Fig. 15. Voltage drop on serial resistor for SN while working in the worst-case
scenario.

the size of the input data array has to increase until it makes the
same output size as it was before the anomaly. This will need
more SRAM space to be allocated, which is impossible in this
implementation with the Arduino’s limited SRAM. Since a fixed
size input and output arrays are defined at the beginning of the

& ige analytics foranome X )/ B Google Mags N

LZO algorithm, the utilized output size is kept as low as possible
to save memory to allocate the maximum permissible size of the
input data array. At the same time, it should start the compression
algorithm with the least number of input data so that it does not
generate larger output than the already allocated output array. The
system has to increase the size gradually until the compression
algorithm provides the desired output size. An upper limit (stop
point) is also needed to limit the number of the utilized input
data during the algorithm’s execution when the input data varies
dramatically resulting in a very low CR. This extra limitation must
be considered as the manipulation of the compressed data and the
data will no longer be the representative of the real data after it
is decompressed in the base station. In addition, a tolerance for
the output size has to be taken into account for the cases where
the desired output array size is unachievable. Although a fixed size
compressed data is generated by the adaptive approach, achieving
the same CR is impossible by changing the input size, and it will
vary the sensitivity of the CR as well. This is because a specific
anomaly among a short and long data introduces different CRs.
Therefore, if the input size is not fixed, the meaning of the CR
will not be fixed anymore and will cause more complexity to the
anomaly detection procedure, and this option is not implemented
in the present research.

4.5. Power consumed by SNs

Reducing the SNs’ power consumption is a critical and chal-
lenging task because they are operated by limited battery power.
According to Fig. 14, to measure the power consumption (P) of each
SN during the worst-case scenario circumstances, the input voltage
(V) and the sink current (I) are used in P = V x I. In this situation
where the longest data packets transmit at the end of every 4 s
loop time, the total power consumption of the SN is maximized
and all the time consuming internal loops in the SN-side program
are working to take maximum processing power. Two Lithium/lon
batteries in series connection derive 7.2 V at the total terminal
voltage during the test. Fig. 15 represents the voltage drop on a
0.5 Q serial resistor (Vi) and the current is calculated based on
I = Vg/R = 75.2 mV/0.5 @ = 150.4 mA while transmission is
in place. Taking more advantage of the LoRa technology, Fig. 15
represents that the amount of increasing the power consumption
due to communication is less than the total processing power
which is remarkable. Therefore, further attempts to reduce the
total power consumption of the developed Arduino101-LoRa based

e | hutps://www.googlecomy/imaps/ @36.7969232.48.5469926, 4287 m/data=13m1!1e3

S c

Fig. 16. Test of communication range in the worst case scenario.
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SNs should target the utilized processor, peripherals, and applied
algorithms instead of communication which can be a plan for the
future research. This test has been done in a mountain area in
Zanjan province in Iran where two Arduino101-LoRa based SNs
could communicate and reach maximum 3.5km distance as seen
in Fig. 16. As a complementary result of the power consumption
test, the following are obtained:

® liarduino101) = 100 mA ; continuous current for processing.

® larduino+spcard+rrc) = 118 mA ; while reading/writing from/to
SD card.

® l(arduino+SDcard-+RTC+Loka) = 150 MA ; only while transmitting.

5. Conclusions

This article revealed practical details of an optimized dual-
thread implementation of a new edge-based anomaly detection
on the Arduino101-LoRa basis wireless sensor network for all ISM
bands and for 433 MHz in particular. As a vital part of the system,
the portable lossless data compression library, LZO was customized
to be implemented in the limited-resource sensor nodes. The sen-
sor nodes evaluate their own data compression rate instead of the
raw data in order to detect anomalies. The compressed data usage
could minimize the needed storage space, total power consump-
tion, and also the time and payload of the communication. The time
tests guaranteed the system operation under the defined worst-
case scenario and thereafter, resultant practical limitations were
identified. The paper evaluated different alternatives and came up
with the verified solutions.
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